Bonn Topology Group - Abstracts

General Information - Members - Activities - Topology Seminar

Talk

January 23, 2024
Irakli Patchkoria (University of Aberdeen): Morava K-theory of infinite groups and Euler characteristic

Abstract

Given an infinite discrete group G with a finite model for the classifying space for proper actions, one can define the Euler characteristic of G and the orbifold Euler characteristic of G. In this talk we will discuss higher chromatic analogues of these invariants in the sense of stable homotopy theory. We will study the Morava K-theory of G and associated Euler characteristic, and give a character formula for the Lubin-Tate theory of G. This will generalise the results of Hopkins-Kuhn-Ravenel from finite to infinite groups and the K-theoretic results of Adem, Lück and Oliver from chromatic level one to higher chromatic levels. At the end we will mention explicit computations for some arithmetic groups and mapping class groups in terms of class numbers and special values of zeta functions. This is all joint with Wolfgang Lück and Stefan Schwede.

Back to seminar page