Hermann Karcher (emeritus 2004) Mathematisches Institut der
Universität Bonn Meine Arbeitsgebiete waren: Warum ich von 1999 bis 2019 Schul- und Hochschulpolitik ignoriert habe: Ich habe angefangen, Texte zur Schulmathematik zu schreiben. Inzwischen 15 Texte zu Analysis, Geometrie und Argumenten mit Zahlen, als Gegenentwurf zu modernen Schulbüchern. |
Hopf-fibered linked Tori aus
3D-XplorMath Dies Apple Programm läuft auf neuen Maschinen nicht mehr (ab OS 10.15) Image sequences made with this program are in virtualmathmuseum.org The interactive Curves and Polyhedra of the museum are here (2021) |
--------------------------- Correction (2014, ... 2022) ----------------------------
Wikipedia used to falsely write: Karcher means are a closely related construction named after Hermann Karcher.
True and 2022 correctly quoted is: Karcher mean is the renaming of the Riemannian Center of Mass construction developed by Karsten Grove and Hermann Karcher in: How to conjugate C1-close group actions, Math.Z. 132, 1973, pp 11-20.
My 1977 paper with Riemannian Center of Mass in the title is more easily found by google. But that does not justify such a renaming. There I also quote: Grove, K., Karcher, H., Ruh, E. A., Jacobi fields and Finsler metrics on compact Lie Groups ..., Math. Ann. 211, 1974, pp. 7-21, where the center is defined on SO(n) on much larger sets than can be done with their Riemannian metric. In Buser, P., Karcher, H., Gromov's Almost Flat Manifolds, Soc. Mat. France, Astérisque 81, 1981, the center is defined on nilpotent Lie groups just using their connection, as in the Euclidean affine case. On spheres the squared distance does not work so well since its Hessian has different eigenvalues in radial and tangential direction. It is easier, and even explicit, to use 1- cos(d(.,p)) instead, since the minimum point of this function is the Euclidean center projected from the midpoint back to the sphere. In Chern's book Global Differential Geometry, MAA Studies in Mathematics, Vol 27, 1989, my article Riemannian Comparison Constructions explains about such modified distance functions. The book is out of print, but google finds my contribution on my Homepage.
For more details see: Riemannian Center of Mass and so called karcher mean (or: https://arxiv.org/abs/1407.2087)
-----------------------------------------------------------------------------------
-----------------------------------------------------------------------------------
Some Published and Unpublished Manuscripts, small texts are still added (2020).
Information zu Vorlesungen WS 99/00 bis WS 03/04, Aufgaben, Bilder, Texte.
Crystal Cove State Park: Photobook (60 MB, 2011) of its fascinating Geology.
-----------------------------------------------------------------------------------
-----------------------------------------------------------------------------------
Hier finden Sie Informationen über
unser Visualisierungsprogramm. Mit Ekkehard Tjaden
haben wir geschlossene Raumkurven konstanter Krümmung gefunden, die ihre eigenen Evoluten sind,
sog. ccc-Autoevoluten, |
Frenet Röhre um Raumkurve konstanter
Krümmung 3-2-Knoten als Autoevolute (2020) |
Ich prüfe seit 2007 nicht mehr.
Aus der Zeit vor der Bologna-Reform: Ratschläge für Prüfungen
Zu meinen Matlabkursen.
Hochschulreform von außen und innen (analysis concepts).
Geometrisches Geschenk zu meinem 60. Geburtstag.
---------------------------------------------------------------------------------------
Am 13.5.02 war die Ehrenpromotion von Frau Prof. Dr. Olga A. Ladyzhenskaya. Verbunden damit war die Abschlußtagung (14.5.02) des SFB256.