Algebraic Geometry I Exercise Sheet 13 Due Date: 30.01.2014

Exercise 1:

Let k be a field and $n \ge 1$ and let $S = k[T_0, \ldots, T_n]$ and $\mathbb{P}_k^n = \operatorname{Proj} S$. For $d \in \mathbb{Z}$ we write $S_d \subset S$ for the elements that are homogenous of degree d.

- (i) Show that $\Gamma(\mathbb{P}^n_k, \mathcal{O}(d)) = S_d$.
- (ii) Assume that $d \ge 0$ and write $N = \dim_k S_d 1 = \binom{n+d}{d} 1$. Show that the choice of a k-basis of S_d induces a surjection $\mathcal{O}_{\mathbb{P}^n_k}^{N+1} \to \mathcal{O}(d)$.
- (iii) Show that the map $\mathbb{P}_k^n \to \mathbb{P}_k^N$ defined by the surjection from (ii) is a closed embedding which agrees with the *d*-fold Veronese embedding if we have chosen the standard basis of S_d (i.e. the basis given by the homogenous monomials).
- (iv) Give a functorial description of the Veronese embedding.

Exercise 2:

Let $X = \operatorname{Spec} A$ be an affine scheme and $Z \subset X$ be a closed subscheme defined by the quasicoherent sheaf of ideals $\mathscr{I} = \tilde{I} \subset \mathcal{O}_X$. Let us write $\operatorname{Bl}_Z X = \operatorname{Proj}(\bigoplus_{d \geq 0} I^d)$ for the blow up of Zin X and $f: Y = \operatorname{Bl}_Z X \to X$ for the projection to X.

- (i) Assume that \mathscr{I} is locally free of rank 1. Show that f is an isomorphism.
- (ii) Show that $f^{-1}(\mathscr{I})\mathcal{O}_Y$ is isomorphic to $\mathcal{O}_Y(1)$ and hence $f^{-1}(\mathscr{I})\mathcal{O}_Y$ is locally free of rank 1.
- (iii) Let $g: Y' \to X$ be a morphism such that $g^{-1}(\mathscr{I})\mathcal{O}_{Y'}$ is locally free of rank 1. Show that there is a unique morphism $g': Y' \to Y$ making the diagram

commutative.

(Hint: reduce to the case $Y' = \operatorname{Spec} B$ affine. Then use the functoriality of Proj to define a map $\operatorname{Proj}(\bigoplus_{d>0} J^d) \to \operatorname{Proj}(\bigoplus_{d>0} I^d)$, where $J = \Gamma(Y', g^{-1}(\mathscr{I})\mathcal{O}_{Y'})$ and use (i)).

Exercise 3:

Let $S = \bigoplus_{d \ge 0} S_d$ be a graded ring such that S is generated by finitely many elements in S_1 as an S_0 -algebra. Let $X = \operatorname{Proj} S$ and $U = X \setminus V(S_+) \subset \operatorname{Spec} S$. Finally let $M = \bigoplus_{d \in \mathbb{Z}} M_d$ be a graded S-module.

- (i) Let $f \in S_1$. Show that the canonical maps $\operatorname{Spec} S_f \to \operatorname{Spec} S_{(f)}$ glue to give a canonical map $\pi: U \to \operatorname{Proj} S$.
- (ii) Let $f \in S_1$. Show that the canonical map $M_{(f)} \otimes_{S_{(f)}} S_f \to M_f$ induced by the inclusion $M_{(f)} \to M_f$ is an isomorphism.
- (iii) Let \mathscr{F} denote the quasi-coherent sheaf on Spec S such that by $\Gamma(\operatorname{Spec} S, \mathscr{F}) = M$ and let \mathscr{G} denote the quasi-coherent sheaf on Proj S defined by the graded S-module M. Show that there is a canonical isomorphism $\pi^*\mathscr{G} \cong \mathscr{F}|_U$.

Exercise 4:

Let k be a field and let $X = V(T_1T_2 - T_3^2) \subset \mathbb{A}^3_k$ and $Z = \{(0,0,0)\} \subset X$ viewed as a closed subscheme with the reduced scheme struture. Further let $\tilde{X} = \text{Bl}_Z X$ denote the blow up of X in Z.

- (i) Show that there is a morphism $f: X \setminus Z \to \mathbb{P}^1_k$ that is given by $(t_1, t_2, t_3) \mapsto (t_1: t_3) = (t_3: t_2)$ on k-valued points.
- (ii) Show that f extends to a morphism $\tilde{f}: \tilde{X} \to \mathbb{P}^1_k$.
- (iii) Show that $\tilde{f}^{-1}(U) \cong \mathbb{A}_k^1 \times U$ for all affine open subsets $U \subset \mathbb{P}_k^1$. (In fact $\tilde{f} : \tilde{X} \to \mathbb{P}_k^1$ is the geometric vector bundle associated to $\mathcal{O}(2)$ on \mathbb{P}_k^1 .)

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom