Dr. E. Hellmann

WS 2013/14

Algebraic Geometry I Exercise Sheet 6 Due Date: 28.11.2013

Exercise 1:

Let \mathscr{F} be a presheaf in sets on a topological space X. We define the *espace étale* of \mathscr{F} as follows. Set

$$\operatorname{Spe}(\mathscr{F}) = \coprod_{x \in X} \mathscr{F}_x$$

as a set and endow it with the strongest topology such that for all $U \subset X$ open and $s \in \mathscr{F}(u)$ the induced maps

$$U \longrightarrow \operatorname{Spe}(\mathscr{F})$$
$$x \longmapsto s_x \in \mathscr{F}_x$$

are continuous.

- (i) Show that the canonical projection map $\pi : \text{Spe}(\mathscr{F}) \to X$ defined by $\mathscr{F}_x \ni s \mapsto x$ is continuous.
- (ii) Show that the assignment

 $X \supset U \longmapsto \{s : U \to \operatorname{Spe}(\mathscr{F}) \text{ continuous } \mid \pi \circ s = \operatorname{id}_U\}$

defines a sheaf which agrees with the sheafification \mathscr{F}^+ of \mathscr{F} .

Exercise 2:

Let (X, \mathcal{O}_X) be a locally ringed space.

(i) Let U be an open and closed subset of X. Then there is a unique section $e_U \in \mathcal{O}_X(X)$ such that $e_U|_U = 1 \in \mathcal{O}_X(U)$ and $e_U|_{X\setminus U} = 0 \in \mathcal{O}_X(X\setminus U)$. Show that $U \mapsto e_U$ yields a bijection {open and closed subsets $U \subset X$ } \iff {idempotent elements $e \in \mathcal{O}_X(X)$ }.

{open and closed subsets $U \subset X$ } \iff {idempotent elements $e \in O_X(X)$ }.

(ii) Show that X is not connected if and only if there exists a decomposition $\mathcal{O}_X(X) \cong A_1 \times A_2$ with rings $A_1, A_2 \neq 0$.

Exercise 3:

Let A be a commutative ring and $\mathfrak{a} \subset A$ be an ideal and write $f : \operatorname{Spec} A/\mathfrak{a} \to \operatorname{Spec} A$ for the map induced by the projection $A \to A/\mathfrak{a}$.

- (i) Show that the map f identifies $\operatorname{Spec} A/\mathfrak{a}$ with the subspace $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} A | \mathfrak{a} \subset \mathfrak{p}\}$ equipped with the subspace topology of $\operatorname{Spec} A$.
- (ii) Show that the map f is a homeomorphism if and only if $\mathfrak{a} \subset \operatorname{Nil}(A)$, where

$$\operatorname{Nil}(A) = \sqrt{(0)} = \{ a \in A \mid a^n = 0 \text{ for some } n \gg 0 \}.$$

- (iii) Show that Spec A is irreducible if and only if A/Nil(A) is a domain if and only if Nil(A) is a prime ideal.
- (iv) Deduce that every closed irreducible subset $X \subset \operatorname{Spec} A$ has a unique generic point.

Exercise 4:

(i) Let k be a field and consider the canonical inclusion $\varphi : B = k[X] \to A = k[X, Y]$. We denote by $f : \operatorname{Spec} A \to \operatorname{Spec} B$ the induced map. Show that

$$f^{-1}(x) = V((g)) \cong \operatorname{Spec}(\kappa(x)[Y])$$

where $x = (g) \in \operatorname{Spec} k[X]$ for some irreducible $g \in k[X]$.

(ii) Show that

$$f^{-1}(\eta) = \operatorname{Spec}(S^{-1}k[X,Y]) \cong \operatorname{Spec}(\kappa(\eta)[Y])$$

where $\eta = (0) \in \operatorname{Spec} k[X]$ is the generic point and $S = k[X] \setminus \{0\}$.

- (iii) Use (i) and (ii) to describe all points of Spec k[X, Y] and their closure in the case where k is algebraically closed.
- (iii) Use a similar method to describe $\operatorname{Spec} \mathbb{Z}[X]$.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom