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Exercise 1: (5+5 points)

Let X = A2
k = Spec k[T1, T2] and Z = V (T1, T2) = Spec (k[T1, T2]/(T1, T2)) ⊂ X.

Let
f : BlZX = Proj

(⊕
d≥0

(T1, T2)d
)
−→ X

denote the projection from the blow up of the origin to the affine plane.

(i) Show that the fiber f−1(Z) of f over the origin is isomorphic to P1
k.

(ii) Show that BlZX is not affine.

Solution:
(i) We have

f−1(Z) = Proj
(⊕

d≥0
(T1, T2)d

)
×X Z

∼= Proj
(⊕

d≥0
(T1, T2)d ⊗k[T1,T2] k[T1, T2]/(T1, T2)

)
∼= Proj

(⊕
d≥0

(T1, T2)d/(T1, T2)d+1
)

Further there is an isomorphism

k[X1, X2] −→
⊕

d≥0
(T1, T2)d/(T1, T2)d+1

given by mapping Xi to Ti. Hence

f−1(Z) ∼= Proj
(⊕

d≥0
(T1, T2)d

)
×X Z ∼= Proj (k[X1, X2]) = P1

k.

(ii) We know that a closed subscheme of an affine scheme is again affine. By (i) BlZX contains P1
k

as a closed subscheme (the base change of the closed immersion Z ↪→ X is a closed immersion).
As P1

k is not affine BlZX is not affine as well.



Exercise 2: (5+5 Points)

Show that the maps fk : X(k) → Y (k), (t1, t2, t3) 7→ t3 of k-valued points describe morphisms
f : X → Y of k-schemes. Describe the fibers of these morphisms: which fibers are irreducible,
which fibers are reduced?

(i) X = Spec k[T1, T2, T3]/(T1T2 − T3), Y = Spec k[T3].

(ii) Assume that char k 6= 2 and let X = Spec k[T1, T2, T3]/(T 2
1 − T 2

2 + T 2
3 − 1), Y = Spec k[T3].

Solution:
In both cases the morphism of affine schemes is induced by the map of rings

k[T3] −→ k[T1, T2, T3]/(T1T2 − T3)

respectively
k[T3] −→ k[T1, T2, T3]/(T 2

1 − T 2
2 + T 2

3 − 1)

that maps T3 to T3.
(i) The points of Spec k[T3] are given by η = (0) and ξa = (T3 − a) for a ∈ k, as k is algebraically
closed. We have

f−1(η) = Spec(k[T1, T2, T3]/(T1T2 − T3)⊗k[T3] κ(η)) = Spec(k(T3)[T1, T2]/(T1T2 − T3))

and

f−1(ξa) = Spec(k[T1, T2, T3]/(T1T2 − T3)⊗k[T3] κ(ξa)) = Spec(k[T1, T2]/(T1T2 − a)).

If L is a field and b ∈ L× we have L[T1, T2]/(T1T2 − b) ∼= L[T1, T
−1
1 ] via T2 7→ b/T1 and this ring

clearly is a domain.
Hence the fibers f−1(η) and f−1(ξa) for a 6= 0 are reduced and irreducible.
For a = 0 we have f−1(ξ0) = Spec k[T1, T2]/(T1T2) and the ideal (T1T2) is the product of the two
(distinct) prime ideals (T1) and (T2). Hence the fiber is reduced but has two irreducible components.

(ii) With the notations form (i) we have (for the same reasons)

f−1(η) = Spec(k(T3)[T1, T2]/((T1 + T2)(T1 − T2) + (T 2
3 − 1)))

and
f−1(ξa) = Spec(k[T1, T2]/((T1 + T2)(T1 − T2) + (a2 − 1))).

Let L be a field with charL 6= 2, then L[T1, T2] = L[T1 + T2, T1 − T2] and given b ∈ L× we have

L[T1, T2]/((T1+T2)(T1−T2)+b) ∼= L[T1+T2, T1−T2]/((T1+T2)(T1−T2)+b) ∼= L[T1+T2, (T1+T2)−1]

for the same reasons as in (i).
Hence f−1(η) and f−1(ξa) are reduced and irreducible if a 6= ±1.
For a = ±1 we have f−1(ξa) ∼= Spec[T1, T2]/(T 2

1 − T 2
2 ) which is reduced and has two irreducible

components, as (T 2
1 −T 2

2 ) is the product of the two (distinct, as char k 6= 2) prime ideals (T1 +T2)
and (T1 − T2).



Exercise 3: (10 Points)

Let X be an irreducible topological space and X = U1∪U2 be a covering of X by two open subsets.
Let F be a sheaf such that F |Ui

is the constant sheaf AUi
for some abelian group A. Show that

F is the constant sheaf AX .

Solution:
Let us write U12 = U1 ∩ U2 and fix isomorphisms Fi = F |Ui

∼= AUi
. The sheaf F is obtained by

gluing F |U1
and F |U2

along an isomorphism

AU12
∼= F1|U12

= F |U12
= F2|U12

∼= AU12
.

As U12 is still irreducible this isomorphism is given by a single isomorphism ϕ : A → A. Let us
identify F |U12

∼= AU12
choosing the isomorphism F |U12

= F1|U12
∼= AU1

|U12
= AU12

. Then for
U ⊂ X we have a commutative diagram

F (U ∩ U1)×F (U ∩ U2)

∼=
��

(s1,s2)7→s1|U∩U12
−s2|U∩U12 // F (U ∩ U12)

∼=
��

A×A
(x1,x2)7→x1−ϕ(x2)

// A.

It follows that we can identify the kernel of the horizontal map with A via x 7→ (x, ϕ−1(x)). Which
gives F (U) ∼= A.
One checks along the lines that for V ⊂ U ⊂ X under the isomorphisms F (U) ∼= A and F (V ) ∼= A
just constructed the restriction map F (U)→ F (V ) translates into the identity idA : A→ A.



Exercise 4: (3+4+3 Points)

View X = A4
k = Spec k[T1, T2, T3, T4] as the scheme parametrizing all 2×2-matrices, i.e. the scheme

representing the functor

S 7−→
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Γ(S,OS)

}
on the category of k-schemes. Let Y ⊂ A4

k denote the functor

S 7−→ {A ∈ X(S) | A2 = 0}.

(i) Show that Y defines closed subscheme of X.

(ii) Show that the reduced subscheme underlying Y is defined by the ideal

(T1 + T4, T1T4 − T2T3) ⊂ k[T1, T2, T3, T4].

(iii) Show that Y is not reduced.

Solution:
(i) The square of the universal 2× 2 matrix on X is given by(

T1 T2
T3 T4

)2

=

(
T 2
1 + T2T3 T1T2 + T2T4

T1T3 + T3T4 T2T3 + T 2
4

)
.

Hence Y is represented by the closed subscheme Spec (k[T1, T2, T3, T4]/I), where I is the ideal

I = (T 2
1 + T2T3, T1T2 + T2T4, T1T3 + T3T4, T2T3 + T 2

4 ).

(ii) Let Z ⊂ X be the closed subscheme defined by the ideal J = (T1 + T4, T1T4 − T2T3). Then Y
and Z have the same underlying topological space: This may be checked on k-valued points, but a
2× 2 matrix with entries in k is nilpotent if and only if its trace and its determinant vanish which
is the case precisely if it defines a k-valued point of Z.
Hence we are left to show that Z is reduced. We have

k[T1, T2, T3, T4]/(T1 + T4, T1T4 − T2T3) ∼= k[T1, T2, T3]/(T 2
1 + T2T3).

One easily checks that T 2
1 + T2T3 is irreducible and hence the ideal generated by it is prime, as

k[T1, T2, T3] is factorial.
(iii) It is enough to show Y 6= Z. But T1 + T4 ∈ J and T1 + T4 /∈ I.
Alternatively, let R = k[T1, T2]/(T1, T2)2 and

A =

(
T1 0
0 T2

)
be a 2 × 2 matrix with coefficients in R. Then A2 = 0, as T 2

1 = T 2
2 = 0 in R and hence A defines

an R-valued point of Y . However, T1 + T2 6= 0 and hence A does not define an R-valued point of
Z.



Exercise 5: (3+3+4 Points)

Let U = A2
k\{0} and write j : U → A2

k = X for the canonical embedding and p : U → P1
k for the

canonical projection onto the projective line.

(i) Show that p∗O(1) ∼= OU .

(ii) Show that j∗OU = OX .

(iii) Let ϕ : O2
P1
k
→ O(1) be the canonical surjection onto the twisting sheaf O(1). Show that the

induced map
j∗p
∗ϕ : O2

X
∼= j∗p

∗O2
P1
k
−→ j∗p

∗O(1) ∼= OX
has a non-trivial cokernel.

Solution:
(i) Let us write F for the functor that assigns to a graded S = k[T1, T2]-module a quasi-coherent

sheaf on Proj k[T1, T2] = P1
k. Further we write M 7→ M̃ for the functor that assigns to a (graded

or not) k[T1, T2]-module M a quasi-coherent sheaf on Spec k[T1, T2] = A2
k.

We have O(1) = F (S(1)) and

p∗O(1) = p∗F (S(1)) ∼= S̃(1)|U ∼= S̃|U = OU .

(ii) The scheme X is noetherian and hence so is U . It follows that j∗ preserves the property of
being quasi-coherent. As X is affine we have

j∗OU ∼= Γ(X, j∗OU )̃ = Γ(U,OU )̃.

However, we computed in the lecture that Γ(U,OU ) = k[T1, T2] and hence j∗OU ∼= k[T1, T2 ]̃ = OX .
(iii) The map ϕ is defined by applying the functor F to the graded morphism of graded rings

Φ : S2 = Se1 ⊕ Se2 −→ S(1)

mapping ei to Ti ∈ S1 = S(1)0. It follows that p∗ϕ is the restriction of Φ̃ to U and j∗p
∗ϕ is

determined by its effect on global sections. However the morphism

p∗ϕ = Φ̃|U : S̃2|U −→ S̃(1)|U

gives on global sections just Φ itself which has a non trivial cokernel (given by k in homogenous
degree −1). Hence

coker j∗p
∗ϕ = (coker Φ)̃ 6= 0.

Alternative solution (for (i) and (iii))
We define a surjection ψ : O2

U = OUe1 ⊕ OUe2 → OU by setting ψ(ei) = Ti. Then the map
p : U → P1

k is just the map defined by ψ using the functorial description of P1
k. Hence we have a

commutative diagram

O2
U

=

��

ψ // Ou
∼=
��

p∗OP1
k p∗ϕ

// p∗O(1).

Especially p∗O(1) ∼= OU proving (i). Further, on global sections ψ is the map Φ from above. Hence
j∗p
∗ϕ is given by Φ̃ and we conclude as above.


