Dr. E. Hellmann Wintersemester 2013/14

Exam for the lecture Algebraic Geometry I

06.02.2014

Hints:

- (i) Please use a blue or black pen.
- (ii) Use a new sheet for each exercise.
- (iii) Throughout the whole exam k denotes an algebraically closed field.
- (iv) You are allowed to use all claims and theorems from the lecture and the exercise sheets.

Grade:

Exercise 1: (5+5 points)

Let $X = \mathbb{A}_k^2 = \operatorname{Spec} k[T_1, T_2]$ and $Z = V(T_1, T_2) = \operatorname{Spec} (k[T_1, T_2]/(T_1, T_2)) \subset X$. Let d

$$
f: Bl_ZX = \text{Proj}\left(\bigoplus_{d \geq 0} (T_1, T_2)^d\right) \longrightarrow X
$$

denote the projection from the blow up of the origin to the affine plane.

- (i) Show that the fiber $f^{-1}(Z)$ of f over the origin is isomorphic to \mathbb{P}^1_k .
- (ii) Show that $Bl_Z X$ is not affine.

Solution:

(i) We have

$$
f^{-1}(Z) = \text{Proj}\left(\bigoplus_{d\geq 0} (T_1, T_2)^d\right) \times_X Z
$$

\n
$$
\cong \text{Proj}\left(\bigoplus_{d\geq 0} (T_1, T_2)^d \otimes_{k[T_1, T_2]} k[T_1, T_2]/(T_1, T_2)\right)
$$

\n
$$
\cong \text{Proj}\left(\bigoplus_{d\geq 0} (T_1, T_2)^d/(T_1, T_2)^{d+1}\right)
$$

Further there is an isomorphism

$$
k[X_1, X_2] \longrightarrow \bigoplus_{d \geq 0} (T_1, T_2)^d / (T_1, T_2)^{d+1}
$$

given by mapping X_i to T_i . Hence

$$
f^{-1}(Z) \cong \operatorname{Proj} \left(\bigoplus_{d \geq 0} (T_1, T_2)^d \right) \times_X Z \cong \operatorname{Proj} \left(k[X_1, X_2] \right) = \mathbb{P}_k^1.
$$

(ii) We know that a closed subscheme of an affine scheme is again affine. By (i) $Bl_Z X$ contains \mathbb{P}^1_k as a closed subscheme (the base change of the closed immersion $Z \hookrightarrow X$ is a closed immersion). As \mathbb{P}^1_k is not affine $\text{Bl}_Z X$ is not affine as well.

Exercise 2: (5+5 Points)

Show that the maps $f_k : X(k) \to Y(k)$, $(t_1, t_2, t_3) \mapsto t_3$ of k-valued points describe morphisms $f: X \to Y$ of k-schemes. Describe the fibers of these morphisms: which fibers are irreducible, which fibers are reduced?

- (i) $X = \text{Spec } k[T_1, T_2, T_3]/(T_1T_2 T_3), Y = \text{Spec } k[T_3].$
- (ii) Assume that char $k \neq 2$ and let $X = \text{Spec } k[T_1, T_2, T_3]/(T_1^2 T_2^2 + T_3^2 1), Y = \text{Spec } k[T_3].$

Solution:

In both cases the morphism of affine schemes is induced by the map of rings

$$
k[T_3] \longrightarrow k[T_1, T_2, T_3]/(T_1T_2 - T_3)
$$

respectively

$$
k[T_3] \longrightarrow k[T_1, T_2, T_3]/(T_1^2 - T_2^2 + T_3^2 - 1)
$$

that maps T_3 to T_3 .

(i) The points of Spec k[T₃] are given by $\eta = (0)$ and $\xi_a = (T_3 - a)$ for $a \in k$, as k is algebraically closed. We have

$$
f^{-1}(\eta) = \operatorname{Spec}(k[T_1, T_2, T_3]/(T_1T_2 - T_3) \otimes_{k[T_3]} \kappa(\eta)) = \operatorname{Spec}(k(T_3)[T_1, T_2]/(T_1T_2 - T_3))
$$

and

$$
f^{-1}(\xi_a) = \operatorname{Spec}(k[T_1, T_2, T_3]/(T_1T_2 - T_3) \otimes_{k[T_3]} \kappa(\xi_a)) = \operatorname{Spec}(k[T_1, T_2]/(T_1T_2 - a)).
$$

If L is a field and $b \in L^{\times}$ we have $L[T_1, T_2]/(T_1T_2 - b) \cong L[T_1, T_1^{-1}]$ via $T_2 \mapsto b/T_1$ and this ring clearly is a domain.

Hence the fibers $f^{-1}(\eta)$ and $f^{-1}(\xi_a)$ for $a \neq 0$ are reduced and irreducible. For $a=0$ we have $f^{-1}(\xi_0) = \text{Spec } k[T_1, T_2]/(T_1T_2)$ and the ideal (T_1T_2) is the product of the two (distinct) prime ideals (T_1) and (T_2) . Hence the fiber is reduced but has two irreducible components.

(ii) With the notations form (i) we have (for the same reasons)

$$
f^{-1}(\eta) = \operatorname{Spec}(k(T_3)[T_1, T_2]/((T_1 + T_2)(T_1 - T_2) + (T_3^2 - 1)))
$$

and

$$
f^{-1}(\xi_a) = \operatorname{Spec}(k[T_1, T_2]/((T_1 + T_2)(T_1 - T_2) + (a^2 - 1))).
$$

Let L be a field with char $L \neq 2$, then $L[T_1, T_2] = L[T_1 + T_2, T_1 - T_2]$ and given $b \in L^{\times}$ we have

$$
L[T_1, T_2]/((T_1+T_2)(T_1-T_2)+b) \cong L[T_1+T_2, T_1-T_2]/((T_1+T_2)(T_1-T_2)+b) \cong L[T_1+T_2, (T_1+T_2)^{-1}]
$$

for the same reasons as in (i).

Hence $f^{-1}(\eta)$ and $f^{-1}(\xi_a)$ are reduced and irreducible if $a \neq \pm 1$.

For $a = \pm 1$ we have $f^{-1}(\xi_a) \cong \text{Spec}[T_1, T_2]/(T_1^2 - T_2^2)$ which is reduced and has two irreducible components, as $(T_1^2 - T_2^2)$ is the product of the two (distinct, as char $k \neq 2$) prime ideals $(T_1 + T_2)$ and $(T_1 - T_2)$.

Exercise 3: (10 Points)

Let X be an irreducible topological space and $X = U_1 \cup U_2$ be a covering of X by two open subsets. Let $\mathscr F$ be a sheaf such that $\mathscr F|_{U_i}$ is the constant sheaf \underline{A}_{U_i} for some abelian group A. Show that $\mathscr F$ is the constant sheaf $\underline A_X$.

Solution:

Let us write $U_{12} = U_1 \cap U_2$ and fix isomorphisms $\mathscr{F}_i = \mathscr{F}|_{U_i} \cong \underline{A}_{U_i}$. The sheaf \mathscr{F} is obtained by gluing $\mathscr{F}|_{U_1}$ and $\mathscr{F}|_{U_2}$ along an isomorphism

$$
\underline{A}_{U_{12}} \cong \mathscr{F}_1|_{U_{12}} = \mathscr{F}|_{U_{12}} = \mathscr{F}_2|_{U_{12}} \cong \underline{A}_{U_{12}}.
$$

As U_{12} is still irreducible this isomorphism is given by a single isomorphism $\varphi: A \to A$. Let us identify $\mathscr{F}|_{U_{12}} \cong \underline{A}_{U_{12}}$ choosing the isomorphism $\mathscr{F}|_{U_{12}} = \mathscr{F}_1|_{U_{12}} \cong \underline{A}_{U_1}|_{U_{12}} = \underline{A}_{U_{12}}$. Then for $U \subset X$ we have a commutative diagram

$$
\mathscr{F}(U \cap U_1) \times \mathscr{F}(U \cap U_2) \xrightarrow{(s_1, s_2) \mapsto s_1 |_{U \cap U_{12}} - s_2 |_{U \cap U_{12}}} \mathscr{F}(U \cap U_{12})
$$
\n
$$
\cong \downarrow \qquad \qquad \downarrow \cong
$$
\n
$$
A \times A \xrightarrow{(x_1, x_2) \mapsto x_1 - \varphi(x_2)} \qquad \searrow A.
$$

It follows that we can identify the kernel of the horizontal map with A via $x \mapsto (x, \varphi^{-1}(x))$. Which gives $\mathscr{F}(U) \cong A$.

One checks along the lines that for $V \subset U \subset X$ under the isomorphisms $\mathscr{F}(U) \cong A$ and $\mathscr{F}(V) \cong A$ just constructed the restriction map $\mathscr{F}(U) \to \mathscr{F}(V)$ translates into the identity id_A : $A \to A$.

Exercise 4: (3+4+3 Points)

View $X = \mathbb{A}_k^4 = \text{Spec } k[T_1, T_2, T_3, T_4]$ as the scheme parametrizing all 2×2 -matrices, i.e. the scheme representing the functor

$$
S \longmapsto \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \Gamma(S, \mathcal{O}_S) \right\}
$$

on the category of $k\text{-schemes.}$ Let $Y\subset \mathbb{A}^4_k$ denote the functor

$$
S \longmapsto \{ A \in X(S) \mid A^2 = 0 \}.
$$

- (i) Show that Y defines closed subscheme of X.
- (ii) Show that the reduced subscheme underlying Y is defined by the ideal

$$
(T_1 + T_4, T_1T_4 - T_2T_3) \subset k[T_1, T_2, T_3, T_4].
$$

(iii) Show that Y is not reduced.

Solution:

(i) The square of the universal 2×2 matrix on X is given by

$$
\begin{pmatrix} T_1 & T_2 \ T_3 & T_4 \end{pmatrix}^2 = \begin{pmatrix} T_1^2 + T_2 T_3 & T_1 T_2 + T_2 T_4 \ T_1 T_3 + T_3 T_4 & T_2 T_3 + T_4^2 \end{pmatrix}.
$$

Hence Y is represented by the closed subscheme $Spec (k[T_1, T_2, T_3, T_4]/I)$, where I is the ideal

$$
I = (T_1^2 + T_2T_3, T_1T_2 + T_2T_4, T_1T_3 + T_3T_4, T_2T_3 + T_4^2).
$$

(ii) Let $Z \subset X$ be the closed subscheme defined by the ideal $J = (T_1 + T_4, T_1T_4 - T_2T_3)$. Then Y and Z have the same underlying topological space: This may be checked on k-valued points, but a 2×2 matrix with entries in k is nilpotent if and only if its trace and its determinant vanish which is the case precisely if it defines a k -valued point of Z .

Hence we are left to show that Z is reduced. We have

$$
k[T_1, T_2, T_3, T_4]/(T_1 + T_4, T_1T_4 - T_2T_3) \cong k[T_1, T_2, T_3]/(T_1^2 + T_2T_3).
$$

One easily checks that $T_1^2 + T_2T_3$ is irreducible and hence the ideal generated by it is prime, as $k[T_1, T_2, T_3]$ is factorial.

(iii) It is enough to show $Y \neq Z$. But $T_1 + T_4 \in J$ and $T_1 + T_4 \notin I$. Alternatively, let $R = k[T_1, T_2]/(T_1, T_2)^2$ and

$$
A = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}
$$

be a 2×2 matrix with coefficients in R. Then $A^2 = 0$, as $T_1^2 = T_2^2 = 0$ in R and hence A defines an R-valued point of Y. However, $T_1 + T_2 \neq 0$ and hence A does not define an R-valued point of Z.

Exercise 5: $(3+3+4$ Points)

Let $U = \mathbb{A}_k^2 \setminus \{0\}$ and write $j: U \to \mathbb{A}_k^2 = X$ for the canonical embedding and $p: U \to \mathbb{P}_k^1$ for the canonical projection onto the projective line.

- (i) Show that $p^*O(1) \cong O_U$.
- (ii) Show that $j_*\mathcal{O}_U = \mathcal{O}_X$.
- (iii) Let $\varphi: \mathcal{O}_{\mathbb{P}^1_k}^2 \to \mathcal{O}(1)$ be the canonical surjection onto the twisting sheaf $\mathcal{O}(1)$. Show that the induced map

$$
j_*p^*\varphi: \mathcal{O}_X^2 \cong j_*p^*\mathcal{O}_{\mathbb{P}_k^1}^2 \longrightarrow j_*p^*\mathcal{O}(1) \cong \mathcal{O}_X
$$

has a non-trivial cokernel.

Solution:

(i) Let us write F for the functor that assigns to a graded $S = k[T_1, T_2]$ -module a quasi-coherent sheaf on Proj $k[T_1, T_2] = \mathbb{P}_k^1$. Further we write $M \mapsto \widetilde{M}$ for the functor that assigns to a (graded or not) $k[T_1, T_2]$ -module M['] a quasi-coherent sheaf on Spec $k[T_1, T_2] = \mathbb{A}_k^2$. We have $\mathcal{O}(1) = F(S(1))$ and

$$
p^*O(1) = p^*F(S(1)) \cong \widetilde{S(1)}|_U \cong \widetilde{S}|_U = \mathcal{O}_U.
$$

(ii) The scheme X is noetherian and hence so is U. It follows that j_* preserves the property of being quasi-coherent. As X is affine we have

$$
j_*\mathcal{O}_U \cong \Gamma(X, j_*\mathcal{O}_U) = \Gamma(U, \mathcal{O}_U).
$$

However, we computed in the lecture that $\Gamma(U, \mathcal{O}_U) = k[T_1, T_2]$ and hence $j_*\mathcal{O}_U \cong k[T_1, T_2] = \mathcal{O}_X$. (iii) The map φ is defined by applying the functor F to the graded morphism of graded rings

$$
\Phi: S^2 = Se_1 \oplus Se_2 \longrightarrow S(1)
$$

mapping e_i to $T_i \in S_1 = S(1)_0$. It follows that $p^*\varphi$ is the restriction of $\tilde{\Phi}$ to U and $j_*p^*\varphi$ is determined by its effect on global sections. However the morphism

$$
p^*\varphi = \tilde{\Phi}|_U : \widetilde{S^2}|_U \longrightarrow \widetilde{S(1)}|_U
$$

gives on global sections just Φ itself which has a non trivial cokernel (given by k in homogenous degree −1). Hence

$$
\operatorname{coker} j_* p^* \varphi = (\operatorname{coker} \Phi) \tilde{\neq} 0.
$$

Alternative solution (for (i) and (iii))

We define a surjection $\psi : \mathcal{O}_U^2 = \mathcal{O}_U e_1 \oplus \mathcal{O}_U e_2 \to \mathcal{O}_U$ by setting $\psi(e_i) = T_i$. Then the map $p: U \to \mathbb{P}^1_k$ is just the map defined by ψ using the functorial description of \mathbb{P}^1_k . Hence we have a commutative diagram

$$
\mathcal{O}_U^2 \xrightarrow{\psi} \mathcal{O}_u
$$

=
$$
\begin{vmatrix} \downarrow & \downarrow \\ \downarrow & \downarrow \\ p^* \mathcal{O}_{\mathbb{P}_k^1} \xrightarrow{\rho^* \varphi} p^* \mathcal{O}(1). \end{vmatrix}
$$

Especially $p^*O(1) \cong O_U$ proving (i). Further, on global sections ψ is the map Φ from above. Hence $j_*p^*\varphi$ is given by $\tilde{\Phi}$ and we conclude as above.