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1 Introduction

The recent study of and progress on quantum signal processing has created
renewed interest in nonlinear Fourier analysis, which is related to important
algorithms in quantum signal processing.

These algorithms of quantum signal processing represent functions on a real
variable using a product of unitary matrices depending on this variable. This
relates to the nonlinear Fourier series (NLFT), which is a multiplicative version
of the classical additive Fourier series. Prominent examples of NLFT live on
low dimensional Lie groups. The unitary group SU(2) provides a natural link
to quantum signal processing, while historically the group SU(1, 1) has played
a prominent role.

In the following sections, we list topics meant for a 45 min presentation at
Oberwolfach.

In Section 2, we give an introduction to quantum computing in general and
to quantum signal processing in particular.

In Section 3, we give an introduction to nonlinear Fourier series and explain
the connection to quantum signal processing.

In Section 4, we elaborate more on quantum signal processing.
In Section 5, we elaborate more on the NLFT and related classical results.

The literature is vast and the themes abundant. We focus on some specially
selected material that is most adapt for our purpose.

1.0.1 Assignments and Schedule

Each topic has a speaker and a backup assigned to it. The backup has no duties
other thajn be prepared if the speaker has to cancel participation in the confer-
ence. Backups should familiarize themselves with their assigned topic, so they
can prepare a lecture on short notice ,say a week ahead of the Arbeitsgemein-
schaft. The speaker should prepare a 2-3 page summary in latex of their talks
and submit to thiele at math.uni-bonn.de by September 15. The speaker should
also prepare a 45 min lecture on the assigned topic to be held at Oberwolfach.
Both blackboard and slides are OK.

Lectures on Monday will be in this order 2.1,2.2,2.3,2.4,2.5,2.7. Lectures on
Tuesday will be 3.1,3.2,3.3,3.4,3.5,3.6. Lectures onWednesday will be 3.7,4.1,4.2.
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Lectures on Thursday will be 4.3,4.4,4.6,5.1,5.3,5.4. Lectures on Friday will be
5.5,5.7,5.8.

2 Basics of quantum computing

2.1 The postulates of quantum computing

Speaker Tiklung Chan, backup Fred Lin.
Present the basic principles of quantum computing underlying the computa-

tional model and illustrate them through the example of teleportation. Follow
Chapter 1 of R. de Wolf’s lecture notes https://arxiv.org/abs/1907.09415

2.2 The circuit model of quantum computing

Speaker Massimiliano Incudini, backup Elie Alhajjar.
The circuit model is a theoretical model for a universal quantum computer.

Present this model. As an example discuss the Deutsch-Józsa algorithm. Follow
Chapter 2 of R. de Wolf’s lecture notes https://arxiv.org/abs/1907.09415

2.3 Simon’s algorithm

Speaker Miriam Kosi, backup Jozsef Mak
Present Simon’s algorithm. Follow Chapter 3 of R. de Wolf’s lecture notes

https://arxiv.org/abs/1907.09415 Possibly start with a review of Deutsch-
Józsa and Bernstein-Varizani of the previous chapter.

2.4 The fast and the faster quantum Fourier transform

Speaker Jaume de Dios Pont, backup Minh Ha Quang
Discuss the FFT and its quantum variant. A classical computer takes

O(N log(N)) time to compute the full output vector using FFT, while a quan-
tum computer outputs a quantum state proportional to the output vector rep-
resented as a superposition of states, remarkably in time O(log(N) log log(N)).
Follow Chapter 4 of R. de Wolf’s lecture notes https://arxiv.org/abs/1907.
09415

See also András Gilyén’s PCMI summer school lectures http://gilyen.hu/
teaching/PCMI_2023_QFT_prez_day_2.pdf

2.5 Quantum period finding and Shor’s algorithm

Speaker Agoston Kaposi, backup Asgar Jamneshan
Shor’s algorithm is a fast quantum computing algorithm that factors a

natural number into a nontrivial product of two natural numbers. If ever
built to factor sufficiently large numbers, it would compromise many exist-
ing cryptographic protocols. Follow Chapter 5 of R. de Wolf’s lecture notes
https://arxiv.org/abs/1907.09415
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2.6 Quantum phase estimation and gradient computation

Talk cancelled.
Follow Chapter 4.6 of R. de Wolf’s lecture notes https://arxiv.org/abs/

1907.09415 and Sections 5.1 and 5.2 of https://arxiv.org/pdf/1711.00465.
pdf. See also parts of Day 2 and Day 3 of András Gilyén’s PCMI summer school
lectures http://gilyen.hu/teaching/PCMI_2023_QFT_prez_day_3.pdf (AG:
Will have some proper notes on this by the end of May.)

2.7 Quantum signal processing

Speaker Joao Doriguello, backup Mateus Costa de Sousa
Sections 2 and 3 of https://arxiv.org/pdf/1806.10236.pdf Also in 1

qubit case under change of basis show equivalent formulations outlined in Sec-
tion 7.6 of https://arxiv.org/pdf/2201.08309.pdf. See also Footnote 2 of
https://arxiv.org/pdf/2312.09072.pdf.

3 Nonlinear Fourier series

3.1 Nonlinear Fourier series for better than square summable

Speaker Mitchell Taylor, backup Chong-Wei Liang
This is the first of a string of presentations on the SU(1, 1) model of nonlinear

Fourier series. Discuss lecture 1 of the PCMI lecture series by T. Tao and C.
Thiele. Focus on p = 0, 1 and do 1 < p < 2 as time allows.

https://arxiv.org/abs/1201.5129

3.2 Nonlinear Fourier series, square summable, half line

Speaker Ricardo Motta, backup Itamar Oliveira
Lecture 2 of the PCMI lecture series by T. Tao and C. Thiele. The point is,

that one has a homeomorphism from a space of square summable sequences on
the half line to a space that one can explicitly describe.

https://arxiv.org/abs/1201.5129

3.3 Nonlinear Fourier series, square summable, full line

Speaker Max Giessler, backup Jia Hao Tan
Lecture 3 of the PCMI lecture series by T. Tao and C. Thiele. Thanks to the

half line theory, the full line can be reduced to the half line modulo a Riemann
Hilbert problem, which is much more subtle than the half line problem.

https://arxiv.org/abs/1201.5129
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3.4 The Riemann Hilbert problem for rational functions

Speaker Kristina Oganesyan, backup Jianghao Zhang
Lecture 4 of the PCMI lecture series by T. Tao and C. Thiele. The rational

case sheds some partial light on the issues discussed in the previous lecture.
https://arxiv.org/abs/1201.5129

3.5 Nonlinear Fourier series, unitary case, half line

Speaker Shao Liu, backup Alexander Ionsescu
We now turn to the SU(2) model of nonlinear Fourier series. It is largely

analogous to SU(1, 1) but at some point bifurcates into a different behaviour.
Highlight the differences and parallel features compared to the SU(1, 1) case
discussed in earlier presentations. Follow Section 6 in the paper by M. Alexis,
G. Mnatsakanyan, and C. Thiele

https://arxiv.org/abs/2310.12683

See also Section 3.3. (Chapter 3 has excerpts form Ya.Ju Tsai’s thesis) in
https://www.math.uni-bonn.de/people/thiele/teaching/2012NLFT/chapter.

pdf

3.6 Nonlinear Fourier series, unitary case, full line

Speaker Lorenzo Pompili, backup Lars Becker
Highlight the differences and parallel features compared to the SU(1, 1) case

discussed in previous presentations. Follow Section 7 in the paper by Michel
Alexis, Gevorg Mnatsakanyan, and Christoph Thiele

https://arxiv.org/abs/2310.12683

3.7 QSP and NLFT

Speaker Miquel Saucedo, backup Rajula Srivastava
We are finally ready to compare QSP and NLFT. Summarize from the paper

by M. Alexis, G. Mnatsakanyan, and C. Thiele
https://arxiv.org/abs/2310.12683, how the results of Sections 6,7 dis-

cussed above provide solutions to the infinite quantum signal processing prob-
lem. Highlights are the permutation of Pauli matrices and the construction of
the outer a. As time allows, compare with the other quantum signal processing
papers of this Arbeitsgemeinschaft.

4 Diving deep into QSP

4.1 Block-encoding & Qubitization

Speaker Rahul Sarkar, backup Diogo Oliveira e Silva
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Eventually, QSP is used in performing singular value transformations of a
matrix that is block encoded by a unitary. Read Section 6 for block encod-
ing, and 7.1 of https://arxiv.org/pdf/2201.08309.pdf for qubitization (or
”lifting” process).

4.2 Quantum Singular Value Transformation

Speaker James Larsen , backup Joseph Peetz
A simple matrix-algebra-based treatment:
http://gilyen.hu/teaching/AdditionalMaterial.pdf See also Sections

3.1-3.3 of https://arxiv.org/pdf/1806.01838.pdf

4.3 Direct methods for finding QSP angles

Speaker Phillipp Schleich, backup Andreas Gilyen
Root finding based method for computing phase factors, and understand

why high precision arithmetic operations is needed. http://arxiv.org/abs/

1806.10236

Read Section 4 of https://arxiv.org/pdf/2110.04993.pdf for the factor-
ization with symmetric phase factors and the concept of maximal solution.

Read this paper for an contour integral approach of finding the complemen-
tary polynomial without root finding https://arxiv.org/abs/2202.02671

4.4 Iterative methods for finding QSP angles and infinite
quantum signal processing

Speaker Ni Hongkang, backup Gennady Uraltsev
Read Section 5 for the fixed point iteration algorithm (perhaps the simplest

algorithm for finding phase factors) https://arxiv.org/pdf/2209.10162.pdf
Then read the construction of Newton’s algorithm which (numerically) sig-

nificantly improves the convergence of iterative methods https://arxiv.org/
pdf/2307.12468.pdf

4.5 Quantum signal processing with continuous variables

Talk cancelled
SU(1,1) aspect of QSP: https://arxiv.org/abs/2304.14383

4.6 Alternative and Multivariable quantum signal pro-
cessing (M-QSP)

Speaker Zane Marius Rossi, backup Lin Lin
Two papers in this direction for QSP with more variables, which may be

useful for treating certain functions of commuting matrices: https://arxiv.

org/pdf/2308.01501.pdf and https://arxiv.org/abs/2205.06261. A third

6

https://arxiv.org/pdf/2201.08309.pdf
http://gilyen.hu/teaching/AdditionalMaterial.pdf
https://arxiv.org/pdf/1806.01838.pdf
 http://arxiv.org/abs/1806.10236
 http://arxiv.org/abs/1806.10236
https://arxiv.org/pdf/2110.04993.pdf
https://arxiv.org/abs/2202.02671
 https://arxiv.org/pdf/2209.10162.pdf
https://arxiv.org/pdf/2307.12468.pdf
https://arxiv.org/pdf/2307.12468.pdf
https://arxiv.org/abs/2304.14383
 https://arxiv.org/pdf/2308.01501.pdf
 https://arxiv.org/pdf/2308.01501.pdf
https://arxiv.org/abs/2205.06261


paper provides a unifying perspective and might be more pedagogical: https:
//arxiv.org/abs/2312.09072

5 More on NLFT

5.1 Variational non-linear Hausdorff Young

Speaker Michel Alexis, backup Valentina Ciccone
By Terry Lion’s theory, some sufficently strong quantitative estimates in the

linear setting transfer to the nonlinear setting by a generic machine. Present the
main result of the paper ”A variational non-linear Hausdorff Young inequality
in the discrete setting” by D. Oliveira e Silva in Mathematical Research Letters,
Volume 25 (2018), Number 6, see also

https://arxiv.org/abs/1704.00688

5.2 Cantor group nonlinear Hausdorff Young

Talk cancelled.
While uniform bounds for Hausdorff Young remain a open problem for the

real model of NLFT, it can be proven in a Cantor group model by a Bellmann
function technique. Present the main result of the paper ”Uniform constants
in Hausdorff-Young inequalities for the Cantor group model of the scattering
transform” by V. Kovac in Proceedings of the American Mathematical Society,
Vol. 140, No. 3 (MARCH 2012), pp. 915-926, see also

https://arxiv.org/abs/1012.3146

5.3 Schur’s algorithm

Speaker Alberto Takase, backup Christoph Thiele
Schur‘s algorithm generalizes the layer stripping of the nonlinear Fourier

series. It appears in Schur’s 1917 paper. We present the main theorem in Boyd’s
paper ”Schur’s algorithm for bounded holomorphic functions” (Bull. London
Math Society 11 (1979) 145-150,

https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/

11.2.145

which compares Schur’s algorithm for a function f with the NLFT (in slightly
modified coordinates) precisely in case f is not an extreme point of the unit ball
of the bounded holomorphic functions.

5.4 Orthogonal polynomials, Geronimus’ Theorem

Speaker Cade Ballew, backup Gevorg Mnatsakanyan
Schur’s algorithm relates further to orthogonal polynomials on the unit cir-

cle, as is witnessed by Geronimus’ theorem. We follow the source ”Schur func-
tions, Schur Parameters and Orthogonal Polynomials on the Unit Circle” by

7

https://arxiv.org/abs/2312.09072
https://arxiv.org/abs/2312.09072
https://arxiv.org/abs/1704.00688
https://arxiv.org/abs/1012.3146
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/11.2.145
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/11.2.145


L.B. Golinskii in Zeitschrift für Analysis und ihre Anwendungen Vol 12 (1993)
457-469.

https://ems.press/journals/zaa/articles/12279

As time allows we include a sample of results relating properties of the
measure to properties of the Schur parameters such as Theorem 1 in Section 4
or Theorem 5 in Section 5.

5.5 Jacobi matrices and Schrödinger operators

Speaker ruben de la Fuente, backup Alexander Hsu
We are interested in the relation of Schur’s algorithm and orthogonal polyno-

mials to Jacobi matrices. This is described in the paper ”Half line Schrödinger
operators with no bound states by D. Damanik and R. Killip in Acta Math 193
(2004) no. 1 31–72, see also

https://arxiv.org/abs/math-ph/0303001

This paper is too long to be discusse din full, we first restrict attention to
the discrete case. Even this is too much, so we make sure we present Theorem 5
in Section 2, which explains the desired connections, and then discuss whatever
time allows.

5.6 The commutation method

Talk cancelled
A generalization of the theory of Schur function allows poles in the disc. This

has many interesting applications. One prominent example is bound states of
of Jacobi matrices. The commutation mathod allows to add and subtract such
states. We discuss this following the paper ”Commutation method for Jacobi
matrices” by F. Gesztesy and G. Teschl in Journal of Differential equations 128,
252–299 (1996). As the paper is too long, we restrict attention to a single step
of the the single commutation method

5.7 Modified Korteweg de Vries by inverse scattering, soli-
tons

Speaker Fabian Höfer, backup Joao Pedro Ramos
We discuss the inverse scattering method to the mKdV equation, a nonlinear

perturbation of te Airy equation. We compare to the linear Fourier method to
solving the Airy equation. Sources include the scetch in Lecture 6 of the PCMI
lecture series (SU(1, 1)) by T. Tao and C. Thiele as well as the paper ”Some
remarks on the modified Korteweg de Vries equations” by S. Tanaka in Publ.
RIMS, Kyoto Univ. 8 (1972/73) 429–437, which also contains a construction
of soliton solutions in the focusing (SU(2)) case. If time is short, we shall be
satisfied with understanding the N=1 case.
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5.8 The discrete NLS, Ablowitz-Ladik

Speaker Kaiyi Huang, backup Luz Roncal
We discuss the inverse scattering method for the Ablowitz-Ladik equation,

a discrete model for the nonlinear Schrödinger equation. We follow the preprint
”Stability of Schur’s iterates and fast solutions of the discrete integrable NLS”
by R. Bessenov and P. Gubkin in

https://arxiv.org/abs/2402.02434,
In so far as there is overlap with the PCMI lecture series (SU(1, 1)) by T.

Tao and C. Thiele that is presented in previous lectures, we try to save time in
the exposition.

9

https://arxiv.org/abs/2402.02434

	Introduction
	Assignments and Schedule

	Basics of quantum computing
	The postulates of quantum computing
	The circuit model of quantum computing
	Simon's algorithm
	The fast and the faster quantum Fourier transform
	Quantum period finding and Shor's algorithm
	Quantum phase estimation and gradient computation
	Quantum signal processing

	Nonlinear Fourier series
	Nonlinear Fourier series for better than square summable
	Nonlinear Fourier series, square summable, half line
	Nonlinear Fourier series, square summable, full line
	The Riemann Hilbert problem for rational functions
	Nonlinear Fourier series, unitary case, half line
	Nonlinear Fourier series, unitary case, full line
	QSP and NLFT

	Diving deep into QSP
	Block-encoding & Qubitization
	Quantum Singular Value Transformation
	Direct methods for finding QSP angles
	Iterative methods for finding QSP angles and infinite quantum signal processing
	Quantum signal processing with continuous variables
	Alternative and Multivariable quantum signal processing (M-QSP)

	More on NLFT
	Variational non-linear Hausdorff Young
	Cantor group nonlinear Hausdorff Young
	Schur's algorithm
	Orthogonal polynomials, Geronimus' Theorem
	Jacobi matrices and Schrödinger operators
	The commutation method
	Modified Korteweg de Vries by inverse scattering, solitons
	The discrete NLS, Ablowitz-Ladik


