Christoph Winges

Rheinische Friedrich-Wilhelms-Universität Bonn
Mathematisches Institut
Endenicher Allee 60
53115 Bonn
Germany

eMail: winges at math dot uni-bonn dot de
Phone: +49 228 73-3351

Office: 4.014

Publications

  1. Injectivity results for coarse homology theories. Proc. Lond. Math. Soc. 121 (2020), no. 6, 1619-1684
     (with U. Bunke, A. Engel and D. Kasprowski)
  2. Transfers in coarse homology. Münster J. Math. 13 (2020), no. 2, 353-424
     (with U. Bunke, A. Engel and D. Kasprowski)
  3. Equivariant coarse homotopy theory and coarse algebraic K-homology. K-theory in algebra, analysis and topology, Contemp. Math. 749 (2020), 13-104
     (with U. Bunke, A. Engel and D. Kasprowski)
  4. Homotopy theory with marked additive categories. Theory Appl. Categ. 35 (2020), no. 13, 371-416
     (with U. Bunke, A. Engel and D. Kasprowski)
  5. Shortening binary complexes and commutativity of K-theory with infinite products. Trans. Amer. Math. Soc. Ser. B 7 (2020), 1-23
      (with D. Kasprowski)
  6. K₁-groups via binary complexes of fixed length. Homology Homotopy Appl. 22 (2020), no. 1, 203-213
     (with D. Kasprowski and B. Köck)
  7. Split injectivity of A-theoretic assembly maps. Int. Math. Res. Not. IMRN
     (with U. Bunke and D. Kasprowski)
  8. Coarse homology theories and finite decomposition complexity. Algebr. Geom. Topol. 19 (2019), no. 6, 3033-3074
     (with U. Bunke, A. Engel and D. Kasprowski)
  9. On the Farrell-Jones Conjecture for algebraic K-theory of spaces: the Farrell-Hsiang method. Ann. K-Theory 4 (2019), no. 1, 57-138
     (with M. Ullmann)
  10. Algebraic K-theory of stable ∞-categories via binary complexes. J. Topol. 12 (2019), no. 2, 442-462
     (with D. Kasprowski)
  11. On the Farrell-Jones Conjecture for Waldhausen's A-theory. Geom. Topol. 22 (2018), no. 6, 3321-3394
     (with N. Enkelmann, W. Lück, M. Pieper and M. Ullmann)
  12. The A-theoretic Farrell-Jones Conjecture for virtually solvable groups. Bull. Lond. Math. Soc. 50 (2018), no. 2, 219-228
     (with D. Kasprowski, M. Ullmann and C. Wegner)
  13. On the transfer reducibility of certain Farrell-Hsiang groups. Algebr. Geom. Topol. 15 (2015), no. 5, 2919-2946
  14. A note on the L-theory of infinite product categories. Forum Math. 25 (2013), no. 4, 665-676

Preprints

  1. Controlled objects in left-exact ∞-categories and the Novikov conjecture. arXiv:1911.02338
     (with U. Bunke, D.-C. Cisinski and D. Kasprowski)

Theses

  • L-Theory of Additive Categories. Diplomarbeit, 2010.
  • Filtering the Assembly Map in Algebraic K-Theory and Transfer Reducibility of ℤⁿ ⋊ ℤ. PhD thesis, 2014.

Teaching

Previous teaching:

Last modified 2020-08-26